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Abstract—Current industrial agricultural methods often use 

inefficient watering, fertilizing, and pest control practices, in part 

because they lack feedback systems. The prototype proposed 

combines current agricultural sensing and analysis research with 

a robotic platform to precisely monitor and care for crops. In this 

paper, we provide a proof of concept with a path to scalability such 

that the system may be implemented at an industrial scale. 

Keywords— Agriculture; Farming; Robotics; Computer Vision; 

Machine Learning; Automation 

I.  INTRODUCTION 

Conventional agricultural methods overcompensate plant 
and soil needs through wasteful watering practices and excessive 
application of pesticides and fertilizers, leading to substantial 
environmental damage [1]. This damage takes on various forms, 
including pollution via runoff, soil depletion, and the extinction 
of local pollinators [2]. The Novel Irrigation and Land use 
Efficiency (NILE) system aims to optimize current agricultural 
practices with a unique robotic approach to precisely monitor the 
health of various crops with a reactive response to caring for the 
plants. This paper describes the design and implementation of a 
prototype system to serve as proof of concept for this approach. 

In recent years there has been an explosion in the number of 
robotic systems designed to use varying levels of autonomy to 
approach challenges facing agricultural industries. Concepts like 
the Greenhouse Partner Robot System [3] seek to augment 
farmer abilities in the greenhouse through a cooperative 
approach to automation. Similarly, Agrobot [4] and Vinebot [5] 
support farmers by providing an autonomous platform upon 
which sensors can gather information from afar. Both 
approaches utilize unique methods of locomotion and control 
but are limited in their scope and ultimately require the 
intervention of farmers or other systems to directly affect crops.  

Some more autonomous systems, such as the Farmbot, tend 
to plants based on internal determination. This approach can 
monitor and water plants based on user input and general 
watering guidelines based on species [6]. Stereoscopic imaging 
allows the system to find adequate locations to measure moisture 
content, for which the user can define feedback systems within 
its web app. Another approach, as taken by AgBotic Inc. and 
their robotic gantry, allows for significantly increased control 
over the watering and fertilizing of a field when compared to 
traditional systems [7]. Unfortunately, it requires significant 

infrastructure investment in greenhouses and supporting 
equipment which so far prohibits widescale industrial adoption. 

Numerous systems gather and relay sensor data to farmers 
for interpretation, but comparatively few systems can 
independently infer plant health from the data. One promising 
approach utilized machine learning paired with computer vision 
to scan images of plant leaves, and identify individual plants, as 
well as distinguish between healthy and diseased crops based 
solely on physical appearance [8]. Combining this approach with 
more conventional sensor data, we plan to develop a fully 
autonomous plant health assessment system that does not need 
farmer intervention. The goal of this project is to incorporate 
concepts from these disparate approaches in a fully autonomous 
system capable of caring for crops from sow to harvest.  

II. PROPOSED SYSTEM 

The proposed robotic system takes inspiration from the 
ubiquitous center-pivot irrigation design. The NILE prototype 
consists of a trolley riding on a circularly driven gantry and is 
intended to operate in a 2-meter diameter raised bed. In the 
following sections we discuss the mechanical, electrical, and 
software integration of the system. 

A. Mechanical Model 

The mechanical model includes three main subassemblies: 
the gantry, trolly, and end effector. 

The gantry rotates about a central post which houses most of 
the electronic and hydraulic components in two weatherproof 
enclosures, as shown in Fig. 1. At the top of the post, one 
enclosure protects various hardware components, including an 
absolute rotational encoder to determine the angle of the gantry. 
Although the robot pivots about the central tower, its motion is 
driven by a rotational drive assembly at the far end of the gantry. 
This drive assembly consists of a geared DC motor that uses a 
chain drive to control two large pneumatic wheels. By increasing 
the moment arm, this configuration significantly decreases the 
motor torque required to drive of the rotation. 



 

Figure 1.  NILE design render 

The gantry assembly supports the most mechanically 
complex component of the NILE system: the trolley assembly, 
shown in Fig. 2. The trolley manages the radial and vertical 
translation of the system in addition to housing the electronic 
hardware required to drive the end effector. Radial translation is 
achieved by three high-friction roller wheels that ride within the 
tracks of the gantry’s aluminum extrusion. One wheel is driven 
by a geared DC motor while the other two wheels stabilize the 
assembly and determine the location of the trolley via encoders 
attached to the drive shafts. Vertical translation is accomplished 
via an ultra-precision lead screw driven by a high-torque stepper 
motor. As the lead screw drives the end effector mounting shaft, 
the shaft rides on bearings slotted into the aluminum extrusion. 

Finally, the end effector assembly (see Fig. 3), for which the 
entire system was designed to support, includes the sensors, 
High Voltage Elimination Circuit (HVEC), and water/fertilizer 
nozzle. To make determinations on soil quality, both a capacitive 
moisture sensor and a thermal probe are used. In addition, the 
HVEC system, discussed in the following section, allows NILE 
to destroy all weeds in the growing zone with high-voltage 
electric arcs. Furthermore, a nozzle integrated into the underside 
of the support structure delivers water and fertilizer to the 
growing zone. Not pictured is the stereoscopic camera which 
will be utilized for computer vision and machine learning. 

 

Figure 2.  Trolly mechanical design 

 

Figure 3.  End effector mechanical design 

B. Electrical Model 

To ensure maximum compatibility, the robotic system will 
operate on North American standard 120VAC power routed into 
a 24V, 25A DC power supply. While an industrial system would 
require significantly more power, this configuration is more than 
adequate to drive all components on the prototype robot. Power 
is distributed across the system through three voltage levels: 5, 
12, and 24 volts. The 5V rail is used to power microprocessors 
and sensors, the 12V rail is used to power the fluid solenoids and 
the rotational drive motor, and the 24V rail is used to power the 
trolley motors and the HVEC. An overview of the electrical 
system is shown in Fig. 4. 

At the core of the system, two computers work in tandem to 
ensure robust operation. A NVIDIA Jetson Nano serves as the 
System Determination Computer (SDC) and handles data 
processing, command sequencing, computer vision, machine 
learning, and server hosting. The SDC interfaces over USB with 
the Hardware Microcontroller (HWM) which amalgamates all 
sensor data and controls the actuators based on commands from 
the SDC. This data is collected through two PCBs which 
interface to all the system’s sensors and motors, routing 
information back to the HWM (and thus, the SDC). An overview 
of this dataflow process can be seen in Fig. 5. 

 

Figure 4.  Power flow diagram 

 



 

Figure 5.  Data flow diagram 

As demonstrated in [9], electrical arcs are highly effective in 
eliminating undesired plants by destroying their xylem tubes and 
thus eliminating the weeds’ ability to draw water and nutrition 
from the soil. Our HVEC system utilizes a Zero-Voltage 
Switching (ZVS) Driver with a flyback transformer to generate 
a targeted arc of 60kV at the end effector of the robot. This is 
used in conjunction with images of the growing zone and a 
machine learning algorithm, discussed in the following section, 
to discriminate between desired and undesired plants. 

C. Software Model 

To tend to plants within the growing zone, the system 
implements a waypoint positioning algorithm. At regular time 
intervals, the SDC inspects the plant bed by navigating the end 
effector to predetermined locations that have been calculated to 
encompass the entire soil bed. Upon reaching a waypoint, the 
SDC captures an image from a stereoscopic camera and 
performs other sensing and plant care operations. When not 
active, the system remains in a computational sleep state. A 
flowchart illustrating this process can be seen in Fig. 6. 

 

Figure 6.  Software flowchart 

Upon capturing a still image from the camera video feed, the 
system applies a machine learning image classifier that makes 
use of a Convolutional Neural Network to identify specific 
objects within the image. After locating plants and potential 
weeds, the system uses a Python script to process the image and 
isolate Regions of Interest (ROI) that either contain crops 
needing to be analyzed, or weeds needing to be exterminated. 



 

Figure 7.  Distance-based soil sampling algorithm 

To rate plant health and confirm the presence of weeds, a 
process called feature extraction is employed using rudimentary 
computer vision techniques. This feature extraction consists of 
four major steps: Gaussian blurring, RGB-to-HSV conversion, 
color masking, and contour detection. The result of this 
algorithm is a verdict on specific crop health such as hydrated, 
wilted, or diseased, in addition to a confidence score for 
suspected weeds. 

The waypoints are spaced such that a collage of images 
taken at each location produces a complete representation of the 
growing zone. This image collage informs the system as to 
where the end effector and its probes can be inserted into the 
soil without damaging vegetation. By computing the distance to 
any plant growth, safe areas where the end-effector can sample 
without disturbing the plants are found. The algorithm then uses 
a Monte-Carlo approach to place sample points as close to the 
plants as possible while maximizing sensor coverage. By doing 
this, the system will prioritize sampling data-rich areas with 
plants rather than areas with just soil. A simulation of this 
algorithm operating on an arbitrary distribution of plants is 
shown in Fig. 7. 

III. IMPLEMENTATION AND RESULTS 

As of this writing, the full system as proposed is under 
construction, with expected completion by late-spring 2022. 
However, modeling and testing of various subsystems has 
already begun. The following sections will describe the control 
system development, HVEC implementation, and computer 
vision implementation. 

A. Modeling and Controller Development 

Simulation development began by deriving the forward and 
inverse kinematic equations from the mechanical model. This 
was a straightforward process except for the rotational link. As 
the rotational drive wheels and angle of the gantry are not 
independent, a constraint equation was derived by assuming no 
slip. The kinematic and the constraint equations were then 
implemented as MATLAB functions to return either the task 
space or joint space coordinates. 

    

Figure 8.  HVEC Operation 

Development of the open-loop dynamic simulation began 
by deriving the system’s equations of motion. These were 
implemented in matrix form as the system mass matrix, vector 
of Coriolis, centripetal forces, and generalized gravitational 
forces. In addition, the joint limits were applied by using virtual 
springs to model collisions. All these equations were then 
combined to model the system as a vector of generalized forces 
acting upon each linkage. 

For the closed-loop dynamic simulation, the desired task 
space coordinates of the system are the initial input. The input 
is then converted to desired joint space coordinates using the 
inverse kinematic functions. The converted coordinates are fed 
into the control rule which outputs the generalized forces 
required to achieve the desired position. A Proportional Integral 
Derivative (PID) control rule was developed because the low 
desired speed made fast response times unnecessary. Thus, we 
were able to tune the control system in the virtual environment 
by adjusting PID gains to achieve acceptable rise time, 
overshoot, and steady state error. 

B. HVEC Implementation 

During testing, the HVEC driver proved to be incredibly 
effective in eliminating undesired plants. Using a 12V source 
voltage, it could produce a 2 cm length arc, equating to about 
60kV (assuming air’s breakdown voltage of around 30kV/cm). 
Early testing, depicted in Fig. 8, shows promising results; 
because the arc destroys the xylem [9], this process ensures the 
weed will not grow back. 

C. Computer Vision and Machine Learning 

Classification of plants and objects within an image begins 
with a high-level machine learning pipeline. Before any pre-
processing is applied, the raw RGB image is fed into a pre-
trained Convolutional Neural Network (CNN) that iterates 
through square segments of the image, performing 
mathematical convolutions of the pixel grid at each step. Since 
crops and common weeds have very similar visual appearances 
when first sprouting, distinguishing them at this early stage 
could prove difficult. Consequently, this CNN has been trained 
on a dataset of 400 images of our desired crop at a mature stage 
and another 400 of generic plant sprouts. By applying this 
algorithm to an input image, the CNN can locate features that 
match those of either the crop or sprouts. Any greenery within 
the image not identified as crop or sprout can be conclusively 
labelled either a weed or an inorganic entity. 



 

Figure 9.  Computer vision and machine learning implimentation 

To distinguish weeds from foreign objects, we make use of 
the four-step image processing algorithm mentioned in the 
Software Model section. Fig. 9 displays the intermediate output 
of each step of this process. In the first stage, Gaussian blurring 
is performed on the original image to reduce data noise and 
eliminate exceedingly small contours within the picture. 

In the second stage, the image format is transferred from 
Red-Green-Blue to Hue-Saturation-Value (HSV) representation 
to allow the vision system to identify colors in the presence of 
shadows and varied lighting conditions. 

In the third stage, a color mask is applied with parameters 
that have been determined heuristically to isolate leafy green 
hues. The result of masking is a binary image containing only 
black and white, where white segments correspond to colors 
within the desired range. The binary image is passed into the 
fourth stage of the algorithm which groups the blobs into 
individual objects called contours. These contours define the 

regions where potential plant or foreign objects have been 
identified and are ready for classification. 

Distinguishing plant material from inorganic items is 
accomplished through texture analysis. Using the Python Sci-
Kit-learn library [11], a mathematical model for leafy plant 
textures was generated with a Local Binary Pattern (LBP) 
descriptor. This texture designator searches for small-scale pixel 
patterns within a grayscale image and saves a generalized model 
of a particular category of texture. Much like a neural network, 
the LBP must be trained on a set of labelled images to recognize 
the trend for a given texture. In the image processing script, the 
algorithm applies this texture model to each contour detected 
and generates a classification prediction. The final stage of Fig. 
9 shows all the leaves detected using purely the texture model. 

In future implementations, this texture-based approach for 
locating plants will also be applied to analyze the overall health 
of desired crops. An approach using a Random Forest classifier 
has been demonstrated to diagnose plant health issues with a 
70% accuracy with only 160 training images [12]. 

IV. CONCLUSION 

As of early-spring 2022, the NILE team has begun 
fabrication and implementation of the mechatronic and machine 
learning systems as modeled and described in section 2. 
Extensive testing of the prototype system is due to begin mid-
spring 2022 which will involve validating sensor collection data, 
positional accuracy of the end-effector, and machine learning 
classification accuracy, as well as fine-tuning the closed-loop 
controller. All test results and other system developments will 
be uploaded to nile-erau.github.io. 

The NILE robotic system was developed with scalability and 
sustainability in mind. We envision the commercial 
implementation of this system as an evolution of center pivot 
irrigation with modular gantry sections combined to cover entire 
fields with dedicated trolleys for each module. This 
configuration would result in minimal trolly down time; full 
field rotations, for the average center pivot installation in the 
United States, take between 14 and 20 hours by which time 
plants require rewatering [13]. Thus, after completing one 
rotation, the system would immediately begin the next cycle. 
This is significantly more efficient than a comparable mobile 
system because any downtime from recharging and/or refilling 
is eliminated. This also reduces manufacturing and 
environmental costs by eliminating batteries, water tanks, and 
other storage methods necessary for mobile systems. 

In conclusion, the NILE robotic system utilizes sensors and 
machine learning to precisely monitor and care for crops in a 
holistic manner, unlike any present-day industrial solutions. This 
unique robotic approach to farming can provide completely 
individualized and autonomous care for each plant, which is 
significantly more sustainable than watering, fertilizing, and 
spraying an entire field. If expanded and implemented in a large-
scale farming operation, the NILE system could greatly reduce 
water consumption and pollution from runoff while maximizing 
crop yield. 
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